78 research outputs found

    Dimerization, but not phosphothreonine binding, is conserved between the forkhead-associated domains of Drosophila MU2 and human MDC1

    Get PDF
    AbstractMutator 2 (MU2) in Drosophila melanogaster has been proposed to be the ortholog of human MDC1, a key mediator in DNA damage response. The forkhead-associated (FHA) domain of MDC1 is a dimerization module regulated by trans binding to phosphothreonine 4 from another molecule. Here we present the crystal structure of the MU2 FHA domain at 1.9Å resolution, revealing its evolutionarily conserved role in dimerization. As compared to the MDC1 FHA domain, the MU2 FHA domain dimerizes using a different and more stable interface and contains a degenerate phosphothreonine-binding pocket. Our results suggest that the MU2 dimerization is constitutive and lacks phosphorylation-mediated regulation.Structured summary of protein interactionsMU2 and MU2 bind by cosedimentation in solution (View interaction)MU2 and MU2 bind by X-ray crystallography (View interaction)MU2 and MU2 bind by molecular sieving (View interaction

    Accuracy of wind observations from open-ocean buoys: Correction for flow distortion

    Get PDF
    The comparison of equivalent neutral winds obtained from (a) four WHOI buoys in the subtropics and (b) scatterometer estimates at those locations reveals a root-mean-square (RMS) difference of 0.56-0.76 m/s. To investigate this RMS difference, different buoy wind error sources were examined. These buoys are particularly well suited to examine two important sources of buoy wind errors because: (1) redundant anemometers and a comparison with numerical flow simulations allow us to quantitatively assess flow distortion errors, and (2) one-minute sampling at the buoys allows us to examine the sensitivity of buoy temporal sampling/averaging in the buoy-scatterometer comparisons. The inter-anemometer difference varies as a function of wind direction relative to the buoy wind vane and is consistent with the effects of flow distortion expected based on numerical flow simulations. Comparison between the anemometers and scatterometer winds supports the interpretation that the inter-anemometer disagreement, which can be up to 5% of the wind speed, is due to flow distortion. These insights motivate an empirical correction to the individual anemometer records and subsequent comparison with scatterometer estimates show good agreement

    Crystal structure and centromere binding of the plasmid segregation protein ParB from pCXC100

    Get PDF
    Plasmid pCXC100 from the Gram-positive bacterium Leifsonia xyli subsp. cynodontis uses a type Ib partition system that includes a centromere region, a Walker-type ATPase ParA and a centromere-binding protein ParB for stable segregation. However, ParB shows no detectable sequence homology to any DNA-binding motif. Here, we study the ParB centromere interaction by structural and biochemical approaches. The crystal structure of the C-terminal DNA-binding domain of ParB at 1.4 Å resolution reveals a dimeric ribbon–helix–helix (RHH) motif, supporting the prevalence of RHH motif in centromere binding. Using hydroxyl radical footprinting and quantitative binding assays, we show that the centromere core comprises nine uninterrupted 9-nt direct repeats that can be successively bound by ParB dimers in a cooperative manner. However, the interaction of ParB with a single subsite requires 18 base pairs covering one immediate repeat as well as two halves of flanking repeats. Through mutagenesis, sequence specificity was determined for each position of an 18-bp subsite. These data suggest an unique centromere recognition mechanism by which the repeat sequence is jointly specified by adjacent ParB dimers bound to an overlapped region

    Structure and Molecular Evolution of CDGSH Iron-Sulfur Domains

    Get PDF
    The recently discovered CDGSH iron-sulfur domains (CISDs) are classified into seven major types with a wide distribution throughout the three domains of life. The type 1 protein mitoNEET has been shown to fold into a dimer with the signature CDGSH motif binding to a [2Fe-2S] cluster. However, the structures of all other types of CISDs were unknown. Here we report the crystal structures of type 3, 4, and 6 CISDs determined at 1.5 Å, 1.8 Å and 1.15 Å resolution, respectively. The type 3 and 4 CISD each contain one CDGSH motif and adopt a dimeric structure. Although similar to each other, the two structures have permutated topologies, and both are distinct from the type 1 structure. The type 6 CISD contains tandem CDGSH motifs and adopts a monomeric structure with an internal pseudo dyad symmetry. All currently known CISD structures share dual iron-sulfur binding modules and a β-sandwich for either intermolecular or intramolecular dimerization. The iron-sulfur binding module, the β-strand N-terminal to the module and a proline motif are conserved among different type structures, but the dimerization module and the interface and orientation between the two iron-sulfur binding modules are divergent. Sequence analysis further shows resemblance between CISD types 4 and 7 and between 1 and 2. Our findings suggest that all CISDs share common ancestry and diverged into three primary folds with a characteristic phylogenetic distribution: a eukaryote-specific fold adopted by types 1 and 2 proteins, a prokaryote-specific fold adopted by types 3, 4 and 7 proteins, and a tandem-motif fold adopted by types 5 and 6 proteins. Our comprehensive structural, sequential and phylogenetic analysis provides significant insight into the assembly principles and evolutionary relationship of CISDs
    corecore